
46 The Delphi Magazine Issue 29

Delphi Meets COM: Part 2
by Dave Jewell

In last month’s introductory
article, I described some of the

basic concepts behind Microsoft’s
versatile COM technology. This
month, I’m going to continue with
the introduction, add a little more
flesh to the bones, and we’ll then
be well-placed to start writing
some COM code.

The Conventional Way
Of Depicting A COM Object
By convention, a COM object is
represented as a box, the contents
of which are not open to examina-
tion. Remember that a COM object
is simply a ‘black box’ that pro-
vides one or more services. You
should not know or care how the
black box works internally, and the
way you use that component
should never be dependent on the
internal implementation. COM obj-
ects communicate with the outside
world solely through the interfaces
that they provide.

When drawing a COM object,
interfaces belonging to that object
are drawn as a line extending from
the object with a small circle at the
end. As indicated in Figure 1, the
IUnknown interface is always shown
pointing vertically upwards,
almost like the antenna on one of
the Telly-Tubbies! That’s because
of the way in which it functions. As
I explained last time, the IUnknown
interface effectively fields inter-
face enquiries, using the QueryIn-
terface call to return a pointer to
an interface which can do some
real work. It should go without
saying that the COM object in
Figure 1 is of no use to man nor
beast!

A more representative COM
interface is shown in Figure 2. Here,
we have a hypothetical COM object
which provides language tool serv-
ices. In this particular case, four
different COM interfaces are
exposed, in addition to the ever-
present IUnknown interface. By con-
vention, the ‘real’ interfaces which
the object provides are drawn as

extending horizontally from the
object.

Remember: a single COM object
may actually implement multiple
interfaces. You mustn’t think of a
single interface as necessarily pro-
viding access to all of an object’s
functionality. Rather, as I’ve
already stressed, it provides
access to a set of functionally
related routines, just like the four
distinct interfaces in our language
tools object.

Of GUIDs, IIDs And REFIIDs
You’ll remember that last time
round, I introduced the idea of
GUIDs, or globally unique identifi-
ers. It turns out that a GUID is actu-
ally made up of four different fields,
as shown in the declaration in
Listing 1, which comes from
SYSTEM.PAS.

There’s not much real-world sig-
nificance to the four different
fields: it isn’t like a TCP/IP address
for example. I don’t see why TGUID
wasn’t implemented simply as a
straight array of 16 bytes: maybe
this stuff is inherited from the
Open Software Foundation who

originated the concept. In any
event, when you define a TGUID,
you’ll need to do something like
Listing 2. This example is taken
from the SHLOBJ.PAS file which
ships with Delphi 3. It shows the
GUID that’s needed to communi-
cate with the Windows Explorer’s
Shell Browser interface.

As a convenience, the Delphi 3
compiler will allow you to avoid all
this D1, D2, D3, D4 nonsense by
specifying a TGUID as if it were a
string constant. This looks like a
string constant, but it compiles to
the same in-memory bit pattern as
before (Listing 3).

I’ve already explained how the
GUID which describes a class is
called a CLSID or class ID. Unfortu-
nately, that’s by no means the end

➤ Figure 1: The conventional
way of depicting a COM object
is with the IUnknown interface
sticking straight up into the air
like a receiving aerial; that’s
because it acts as a receiver for
interface pointer requests.

➤ Figure 2: To be of any use, a
real-world COM object must
implement one or more useful
interfaces. Here we see a
hypothetical language tools
component which provides
four different types of service.
Non-IUnknown interfaces are
generally drawn as horizontal
lines to the left or right.

January 1998 The Delphi Magazine 47

of the story as far as COM jargon is
concerned. Other types of entity
you’ll frequently encounter are the
IID and the REFIID.

As well as being used for class
identification, GUIDs are also used
to identify interfaces to COM
objects. An interface is identified
using an IID or interface identifier:
IID_IShellBrowser in Listings 2 and
3 is an example of an IID. However,
because GUIDs are such big things
(16 bytes) it’s not convenient to
pass them directly on the stack , at
least, not in a language independ-
ent way. COM therefore introduces
the idea of a REFIID which is essen-
tially just a 32-bit pointer to an IID.
Fortunately for us, Delphi will
always pass a const TGUID parame-
ter by reference, so we don’t need
to worry about REFIIDs to any great
extent. I mention it here just in case
you’re saddled with a pile of C/C++
COM-related code and you need to
figure out what’s going on [in which
case you’d soon need the services of
a psychiatrist! Editor].

Armed with the IID of a required
interface, we can call QueryInter-
face to get a pointer to the inter-
face we’re after. COM defines a
number of standard IIDs which
you’ll find in the OLE2.PAS file. One
of these is IID_IUnknown, which is
the identifier of the IUnknown inter-
face itself (Listing 4).

If you’re paying attention, you’re
probably feeling a bit puzzled at
this point. After all, having once
obtained a pointer to some inter-
face on an object, why should you
ever need to explicitly get back to
the IUnknown interface? I’ve told
you that any COM interface must
inherit from IUnknown, which
means that the interface pointer
you’ve got already provides the
QueryInterface method. You can
use this method to instantly
‘switch’ over to any other sup-
ported interface. What then, is the
point of going back to IUnknown?

It’s a question of object equality.
Suppose we’re using our previ-
ously mentioned language tools
object and we’ve got a pointer to an
ISpellCheck interface and a pointer
to an IGrammar interface. It might be
important to determine whether or
not the two interfaces refer to the
same object. You can’t just see if
the two pointers are equal because
you’re comparing pointers to dif-
ferent method tables: there will
never be equality. Instead you
have to use QueryInterface to
retrieve pointers to the two IUn-
known interfaces and then do the
comparison. For the purposes of
testing object equality, a COM
object is identified by the address
of its IUnknown pointer. Listing 5
shows an example code fragment

const
IID_IShellBrowser: TGUID =
(D1:$000214E2; D2:$0000; D3:$0000; D4:($C0,$00,$00,$00,$00,$00,$00,$46));

➤ Listing 2

Const
IID_IShellBrowser: TGUID = ‘{000214E2-0000-0000-C000-000000000046}’;

➤ Listing 3

const
IID_IUnknown: TGUID = ‘{00000000-0000-0000-C000-000000000046}’;

➤ Listing 4

PGUID = ^TGUID;
TGUID = record
D1: Integer;
D2: Word;
D3: Word;
D4: array[0..7] of Byte;

end;

➤ Listing 1

48 The Delphi Magazine Issue 29

which calls MessageBeep if two
pointers relate to the same COM
object.

Of course, if you were going to do
much equality testing, it would
make sense to write a function to
do this once rather than writing the
code inline. Because of the inher-
ent polymorphism in COM inter-
faces, you could define the
function as taking two IUnknown
pointers and then pass any type of
interface pointers to the routine.

Delphi Meets COM
Now it’s time to look in more detail
at the COM support built into
Delphi Pascal. In Listing 6 you can
see the declaration for the IMalloc
interface, which is defined in
Borland’s ACTIVEX.PAS file.

As you know, ordinary Delphi
class types are prefixed with a T
such as TObject, TListBox and so
on. By contrast, interface declara-
tions are prefixed with an I. Also,
you’ll see that this interface decla-
ration uses the interface keyword
rather than class. IMalloc is a built
in system service that deals with
memory management and, as you
can see, IMalloc is defined as inher-
iting from IUnknown. As you’ll recall
from our discussion last month,
this does not mean that IMalloc
inherits any code from IUnknown.
Rather, it indicates that IMalloc
inherits the interface previously
declared for IUnknown. Thus, if one
were to look at the corresponding
method table generated by the
compiler, you’d see QueryInter-
face, AddRef and ReleaseRef occu-
pying the first three ‘slots.’ Next
would come Alloc, Realloc and so
forth.

Note that as with ordinary
Delphi virtual methods, it’s impor-
tant to stress that method table
entries are assigned by the com-
piler in the order that they appear
in the declaration. If you were to
rearrange the six methods in IMal-
loc, putting them into alphabetical
order, for example, then the code
would compile perfectly but you’d
end up with the wrong methods in
the wrong method table entries.

This is a crucial point. COM
interfaces are immutable: once
defined and out ‘in the field’ they

cannot be altered. If you want to
enhance an interface, the correct
approach is to add a new interface
to your COM object so that older
clients can fetch the old, existing
interface, while newer, in-the-
know, clients can get a pointer to
the enhanced interface. In prac-
tice, if the new interface inherits
from the old, then the first few
method slots of the new interface
will be occupied by the existing
methods of the old interface. Thus,

internally you can just pass the
same interface pointer to both old
and new clients irrespective of
which IID they specify. Older cli-
ents won’t know (and won’t care)
that there are more methods in the
method table than they’re aware
of. I’m saying this because you
might initially suppose that adding
a new interface is a major hassle. It
isn’t.

I should also point out that when
declaring interfaces, you can’t

For Anoraks Only...

If, like me, you come from an assembler programming background (or
are maybe just terminally inquisitive) then you might be interested in

the code that Delphi generates when making COM calls. Look no fur-
ther! I’ve never seen this discussed elsewhere, but I’m always happy to
step in where angels fear to tread (keep quiet at the back there...).

The code below corresponds to the ‘business end’ of the equality
test that I’ve just described. As with Delphi’s long-string support, there
is a certain amount of behind the scenes ‘house-keeping’ code associ-
ated with the use of COM interface pointers. In particular, there are two
calls to IntfClear which initialise the IUnknown pointer variables before
passing their addresses to the QueryInterface routine. I suspect that
the compiler generates this initialisation code whenever it sees an
interface pointer used as an [out] parameter to a COM call.

Particularly interesting is the call to QueryInterface. Because this
method call always corresponds to the first entry in the COM object’s
method table, calling QueryInterface is very efficient. You’ll also notice
that , as with C++ and Delphi Pascal itself, calling a COM method
involves an implicit this argument in addition to the method parame-
ters which are directly visible to the programmer. See the code listing
below:

:0040165B lea eax, dword ptr [ebp-0C]
:0040165E Call VCL30.System.@IntfClear ; initialise u1
:00401663 push eax
:00401664 push 00402010 ; push address of IID_IUnknown
:00401669 mov eax, dword ptr [ebp-04]
:0040166C push eax ; push implicit “this” (v1)
:0040166D mov eax, dword ptr [eax] ; dereference v1
:0040166F call dword ptr [eax] ; call QueryInterface
:00401671 test eax, eax
:00401673 jle 0040169E ; check result
:00401675 lea eax, dword ptr [ebp-10] ; initialise u2
:00401678 Call VCL30.System.@IntfClear
:0040167D push eax
:0040167E push 00402010 ; push address of IID_IUnknown
:00401683 mov eax, dword ptr [ebp-08]
:00401686 push eax ; push implicit “this” (v2)
:00401687 mov eax, dword ptr [eax] ; dereference v2
:00401689 call dword ptr [eax] ; call QueryInterface
:0040168B test eax, eax
:0040168D jle 0040169E ; check result
:0040168F mov eax, dword ptr [ebp-0C]
:00401692 cmp eax, dword ptr [ebp-10] ; compare the pointers
:00401695 jne 0040169E
:00401697 push 00000000
:00401699 Call user32.MessageBeep ; it’s beep time!

var
v1: ISpellCheck;
v2: IGrammar;
u1, u2: IUnknown;

...
if v1.QueryInterface (IID_IUnknown, u1) > 0 then
if v2.QueryInterface (IID_IUnknown, u2) > 0 then
if u1 = u2 then MessageBeep (0);

➤ Listing 5

50 The Delphi Magazine Issue 29

define member fields because a
COM interface is inherently proce-
dural. As with ordinary Delphi
Pascal, you can define properties
which simulate member fields, but
the read and write specifiers for the
property must resolve onto a pro-
cedure or function call rather than
a member field. All methods of an
interface are inherently public: the
usual public, private, protected
and published keywords are not
allowed in an interface declaration.

As you can see from the declara-
tion in Listing 6, all the methods are
defined using the stdcall calling
convention, which is the same
convention you use when calling
Windows API routines. This is the
calling convention you should use
when working with COM objects
that can be called from other
processes. However, there is
another calling convention, safe-
call, which you use when imple-
menting methods of dual
interfaces. I haven’t discussed dual
interfaces yet, so you’ll have to
take that one on trust! Bear in mind
that, as with ordinary Delphi class
methods, the default calling con-
vention of an interface method is
register which is very unlikely to
be what you want. You’d only use
register methods when working
with internal interfaces and
objects which, of course, isn’t COM
programming at all.

Introducing TComObject
In order to do useful things, such as
creating shell extensions, we need
to get into a bit more detail at this
point. The code in Listing 7 shows
the class declaration for TComOb-
ject, an abstract class that defines
the most important behaviour of a
real-world COM object. Using TCo-
mObjectwe can, for example, create
shell extensions, as you’ll soon see.

If you read the Delphi documen-
tation for TComObject, it states that:

“TComObject has a CLSID and a
class factory, so it can be
registered and externally instanti-
ated (instantiated from another
module) ... TComObject also sup-
ports aggregation, OLE exception
handling, and the safecall calling
convention used for dual
interfaces.”

Oh dear, there’s a lot of
mysterious-sounding stuff there
such as class factories, aggrega-
tion and dual interfaces that we
haven’t covered yet. Time for just a
bit more theory before we get into
the practice! But first, take a look at
the declaration in Listing 7 for TCo-
mObject: there are a few more lan-
guage features here that I need to
explain.

Firstly, notice that TComObject
isn’t an abstract interface declara-
tion: it uses the class keyword
instead of interface. Rather, it’s an
honest to goodness class declara-
tion. You should treat TComObject
as an abstract class, deriving your
own context menu handler (or
whatever) from this object.

Secondly, take a closer look at
the first line of the class declara-
tion: in addition to indicating that
TComObject is derived from TObject,
this special syntax indicates that
the new object is going to support
one or more previously specified

interfaces. In this case, the declara-
tion indicates that TComObject will
implement the IUnknown interface
together with another interface
called ISupportErrorInfo. Don’t
worry about the ISupportErrorInfo
interface for now, suffice to say
that this code is required by OLE
Automation controllers which
need to know whether or not a par-
ticular error object is going to be
available. We’ll be looking at this in
more detail later in the series when
we cover OLE Automation and
ActiveX controls.

The declaration for TComObject
also demonstrates another aspect
of Delphi’s COM-related language
extensions: interface method map-
ping. Suppose you define a class
which implements an interface
called ISpellCheck. This spell-
checking interface might include a
method called AddCustomDiction-
ary. By default, the compiler will
look for a method called AddCustom-
Dictionary in your new class.

IMalloc = interface(IUnknown)
[‘{00000002-0000-0000-C000-000000000046}’]
function Alloc (cb: Longint): Pointer; stdcall;
function Realloc (pv: Pointer; cb: Longint): Pointer; stdcall;
procedure Free (pv: Pointer); stdcall;
function GetSize (pv: Pointer): Longint; stdcall;
function DidAlloc (pv: Pointer): Integer; stdcall;
procedure HeapMinimize; stdcall;

end;

➤ Listing 6

TComObject = class(TObject, IUnknown, ISupportErrorInfo)
private
FRefCount: Integer;
FFactory: TComObjectFactory;
FController: Pointer;
function GetController: IUnknown;

protected
{ IUnknown }
function IUnknown.QueryInterface = ObjQueryInterface;
function IUnknown._AddRef = ObjAddRef;
function IUnknown._Release = ObjRelease;
{ IUnknown methods for other interfaces }
function QueryInterface(const IID: TGUID; out Obj): Integer; stdcall;
function _AddRef: Integer; stdcall;
function _Release: Integer; stdcall;
{ ISupportErrorInfo }
function InterfaceSupportsErrorInfo(const iid: TIID): HResult; stdcall;

public
constructor Create;
constructor CreateAggregated(const Controller: IUnknown);
constructor CreateFromFactory(Factory: TComObjectFactory;
const Controller: IUnknown);

destructor Destroy; override;
procedure Initialize; virtual;
function ObjAddRef: Integer; virtual; stdcall;
function ObjQueryInterface(const IID: TGUID; out Obj): Integer;

virtual; stdcall;
function ObjRelease: Integer; virtual; stdcall;
function SafeCallException(ExceptObject: TObject; ExceptAddr: Pointer):
HResult; override;

property Controller: IUnknown read GetController;
property Factory: TComObjectFactory read FFactory;
property RefCount: Integer read FRefCount;

end;

➤ Listing 7

January 1998 The Delphi Magazine 51

However, what if your COM object
implements several different inter-
faces, some of which include meth-
ods with the same name? Or what if
you merely want to give a more
descriptive name to the method
which indicates what interface it’s
associated with?

Fortunately, Mr Hejlsberg
thought of that! If you look at the
beginning of the protected section,
you’ll see an example of interface
method mapping where the three
IUnknown methods are mapped
onto new method names, these
being ObjQueryInterface, ObjAddRef
and ObjRelease. When using
interface method mapping, bear in
mind that you can only map a
method onto a new name within
the same class: you can’t map a
method over onto the implementa-
tion part of a wholly different class.
Also, the number and types of

parameters, the function result
and the calling convention must all
be compatible with the original
method declaration.

Delphi 3: Aggregation
Without Aggravation!
If you’ve been keeping back copies
of The Delphi Magazine, now would
be a good time to go in search of
Issue 15. If you look at my Beating
The System column in that issue,
you’ll find that I present the code
for a COM-based context menu
handler written using Delphi.
Because this article was written
way back in 1996, I developed the
code using Delphi 2, which doesn’t
have as many whizzy COM based
language extensions as Delphi 3.

If you look at that old 1996 code
(a year is a long time in this
business!), you’ll see that in order
to interface properly with the

Windows Explorer, a context menu
handler has to implement two dif-
ferent interfaces, IContextMenu and
IShellExtInit. Broadly speaking,
IShellExitInit is responsible for
retrieving the name(s) of the
selected file(s) from Windows
Explorer, whereas the IContext-
Menu deals with the business of
adding custom menu items to the
Explorer’s context menu and
receiving notifications when a
custom menu item is called.

My original Delphi 2 code
worked by declaring two new
classes, TOwnedContextMenu which
implemented the IContextMenu
interface, together with TOwned-
ShellExtInit to implement the
IShellExtInit interface. Another
class, TContextMenuObject, was
effectively the ‘owner’ of the two
aforementioned classes. In the
constructor of TContextMenuObject,
I created a private instance of each
of the two owned classes, as shown
in Listing 8.

Similarly, these two owned
objects were destroyed when
TContextMenuObject was itself
destroyed. Because the outer level
class had to directly implement the
two aforementioned classes, this
involved a bit of necessary
jiggery-pokery inside the QueryIn-
terface code for the TContext-
MenuObject object. Listing 9 shows
what it looked like.

As you can see, the QueryInter-
face code checks to see what inter-
face is being requested, and
returns a pointer to the appropri-
ate object. With hindsight, this old
code is a little confusing because
the two internal objects are named
with i as the first letter of their
name, which makes them sound
like abstract interfaces. However,
what’s being returned here are
pointers to one of the two internal
objects, a pointer to the object
TContextMenuObject itself, or Nil if
the supplied interface identifier
isn’t recognised.

This is a classic example of
aggregation. From the viewpoint of
the client software (the Explorer in
the case of a context menu han-
dler), TContextMenuObject appears
as a single, monolithic object
which supports all the needed

➤ Figure 3: Here’s an excellent example of COM aggregation. This is
one of the sample ActiveX controls that Microsoft provided along
with the Visual Basic 5 CCE Edition. This calendar control is actually
aggregated from several other components, including buttons,
checkboxes, radio groups, and so forth. But it only exposes one COM
object to the world and ‘looks’ like a single object.

constructor TContextMenuObject.Create;
begin
inherited Create;
iContextMenu := TOwnedContextMenu.Create (self);
iShellExtInit := TOwnedShellExtInit.Create (self);
...more code...

end;

➤ Listing 8

52 The Delphi Magazine Issue 29

interfaces. The fact that, internally,
it actually comprises three objects
is completely hidden. That’s what
we mean by aggregation: aggregat-
ing what appears to be a single
COM object from a number of
other, constituent, COM objects.

Aggregation is a powerful con-
cept. As I mentioned earlier, Delphi
3’s TComObject class provides
direct support for aggregation:
that’s the purpose of the Control-
ler property. If a TComObject is one
of a group of ‘inner’ aggregated
objects, then the Controller prop-
erty will point to a ‘master’ IUn-
known interface which is
maintained by the overall ‘super-
-object’ (for want of a better
phrase). In this case, the three
standard IUnknown methods of all
interfaces except IUnknown are
routed through this controlling
interface rather than being han-
dled natively by the inner object.
This is best demonstrated with a
snippet of code from COMOBJ.PAS
(Listing 10).

Unashamed Delphi zealot
though I am, the best way to see
aggregation in action is to play
around with the custom control
creation facilities of Visual Basic
5.0. With VB5, you can visually lay
out what looks like a standard
form, but is actually the display
surface of a new, ActiveX super-
component. You can then add
existing COM objects to this ‘form,’
bind them all together with appro-
priate code, expose the necessary
properties, methods and events to
the outside world and, hey presto,
you’ve got an aggregated object
which is indistinguishable from a
non-aggregated object as far as
client software is concerned. The
only difference is that it took a frac-
tion of the time that it would have
taken to build the entire thing from
scratch. You see, reusable compo-
nent based development can be
applied on the micro level as well
as the macro level...

Having said that aggregation is
powerful, there’s no point going to
the extra effort of creating inner
objects when you just don’t need
them. Using the COM support in
Delphi 3.0, you can directly pro-
vide multiple interfaces on one

COM object without the need for
aggregation. The class declaration
shown in Listing 11 is taken from
one of Borland’s COM examples.

As before, this is the declaration
for a shell context menu handler,
derived from TComObject. The dif-
ference here is that we can directly
tell the Delphi 3 compiler to sup-
port IShellExtInit and IContext-
Menu within the one object. The
four needed methods (three from
IContextMenu and one from IShel-
lExtInit) are implemented
directly within the class. In fact, to
implement your own context menu
handler, pretty well all you need to
do is provide the code for these
four methods. This is a lot less
work than was needed for my origi-
nal Issue 15 event handler. In fact,
Borland really couldn’t have made

it any simpler for you than they
have done!

The Class Factory:
Getting Into Manufacturing...
But wait, why did I say pretty well
all you need to do? You’re right,
there is just one more wrinkle
before we can dive in and start
churning out millions of context
menu handlers! We also need to
understand a little about class
factories.

As the name suggests, a class
factory is a special type of class
whose only role in life is to create
other classes. A class factory pro-
vides a standard interface for cre-
ating COM classes, irrespective of
the vagaries of a particular class.
When you create a new COM class,
it’s generally the responsibility of

function TContextMenuObject.QueryInterface (const iid: TIID; var obj): HResult;
const
{ The interface ID’s we can respond to }
IID_IContextMenu : TGUID = (D1:$000214E4; D2:$0000; D3:$0000;
D4:($C0,$00,$00,$00,$00,$00,$00,$46));

IID_IShellExtInit: TGUID = (D1:$000214E8; D2:$0000; D3:$0000;
D4:($C0,$00,$00,$00,$00,$00,$00,$46));

begin
Result := 0;
if IsEqualIID (iid, IID_IUnknown) then begin
Pointer (obj) := self; { Wants IUnknown - return self }
AddRef;

end else if IsEqualIID (iid, IID_IContextMenu) then begin
Pointer (obj) := iContextMenu; { Wants IContextMenu - return it }
AddRef;

end else if IsEqualIID (iid, IID_IShellExtInit) then begin
Pointer (obj) := iShellExtInit; { Wants IShellExtInit - return it }
AddRef;

end else begin
Pointer (obj) := nil;
Result := E_NoInterface;

end;
end;

➤ Listing 9

function TComObject.QueryInterface (const IID: TGUID; out Obj): Integer;
begin
if FController <> nil then
Result := IUnknown(FController).QueryInterface(IID, Obj)

else
Result := ObjQueryInterface(IID, Obj);

end;

➤ Listing 10

TContextMenu = class(TComObject, IShellExtInit, IContextMenu)
private
szFile: array[0..MAX_PATH] of Char;

public
function QueryContextMenu(Menu: HMENU; indexMenu, idCmdFirst, idCmdLast,
uFlags: UINT): HResult; stdcall;

function InvokeCommand(var lpici: TCMInvokeCommandInfo): HResult; stdcall;
function GetCommandString(idCmd, uType: UINT; pwReserved: PUINT;
pszName: LPSTR; cchMax: UINT): HResult; stdcall;

function Initialize(pidlFolder: PItemIDList; lpdobj: IDataObject;
hKeyProgID: HKEY): HResult; stdcall;

end;

➤ Listing 11

54 The Delphi Magazine Issue 29

➤ Figure 4: The Microsoft Equation Editor is an example of an
out-of-process COM server. It’s implemented as a separate EXE file,
but provides COM services to interested parties. As to what a
quadratic equation might be, that’ll have to wait for another time...

you, the COM class creator, to pro-
vide a class factory that can be
used by the COM client to create
new instances of the target class.
Thus, when creating a context
menu handler, the Windows
Explorer does not actually create
the TContextMenu class (Listing 11)
directly. Instead, the server soft-
ware (the DLL which is called by
Explorer) must provide a class fac-
tory which is then used to create
an instance of TContextMenu.

Interestingly, a class factory is
itself a COM class but you’ll be
relieved to know that there are no
such things as class factory facto-
ries! In other words, the client soft-
ware can create the class factory
directly and it then uses the class
factory to create the target class.
So why can’t the client create the
target class directly? As already
stated, the class factory interface
is designed to provide a uniform,
consistent interface which insu-
lates the client from having to
worry about the details of con-
structor methods, the different
arguments required by the
constructor and so forth.

Of course, it is possible to instan-
tiate target classes by making a
direct call to the constructor.
Whether or not this is appropriate
really depends on the type of COM
object that’s being developed. In
the case of context menu handlers,
the Explorer expects to find a class
factory.

Incidentally, up until now, we’ve
been looking at COM classes
largely from the perspective of the
COM class author, but how does
the client get an instance of a class
factory and then use it to create an
instance of the target class?

In the case of Explorer, every-
thing happens through one simple
Windows API call, namely CoCre-
ateInstance. You pass the required
CLSID to this routine and it
searches the registry to discover
the name of the server that imple-
ments the class. The server is
loaded, a pointer to the class fac-
tory interface is obtained, and the
CreateInstance method is invoked
to obtain a pointer to the target
class. A lot happens behind the
scenes, but it’s just one simple call

as far as the client code is
concerned.

In next month’s instalment of
this series, we’ll be looking in more
detail about how the Windows
registry fits into the ‘big picture’
and giving more examples of
instantiating COM classes from the
viewpoint of client software. In the
meantime, if you go back to Issue
15 you’ll find that my context menu
example also, of necessity,
included a class factory implemen-
tation. There wasn’t a massive
amount of code involved but it’s
comforting to note that, once
more, the whole thing gets much
simpler under Delphi 3.0. Listing 12
shows how to implement a class
factory with Delphi 3.0.

There, that wasn’t too difficult
was it? Again, this code was taken
from one of the Borland demos
which ships with Delphi 3.0. This
one-liner (assuming you have a
wide screen!) creates a class fac-
tory to handle the instantiation of
the TContextMenu class. Unlike an
ordinary constructor, you don’t
need to do anything with the result
of the above Create call. Behind the
scenes, the new class factory is
automatically added to a list of

class factories managed by the
COMSERV unit. It’s this unit which
implements the nuts and bolts
code needed to roll your own COM
servers, of which a context menu
handler is a good example.

I’ve used the word ‘server’ sev-
eral times now without precisely
explaining it. As you’ve probably
gathered, a COM server is a chunk
of software that’s responsible for
implementing one or more COM
objects and dishing out instances
of those objects to any interested
party that wants one. Most of the
time, COM servers come in two fla-
vours: in-process servers and out-
of-process servers. This is really
just COM jargon for DLLs and EXE
files. A COM server that’s pack-
aged as a DLL is an in-process
server because, like any Windows
DLL, it lives in the same address
space as the process that’s using
it. By contrast, a COM server that’s
implemented as an EXE file is an
out-of-process server, because it
lives in an address space all of its
own.

Our shell context menu handler
is an example of an in-process
COM server. The DLL is loaded
directly into Explorer’s address

TComObjectFactory.Create(ComServer, TContextMenu,
CLSID_ContextMenuShellExtension,‘’, ‘Delphi 3.0 ContextMenu Example’,
ciMultiInstance);

➤ Listing 12

January 1998 The Delphi Magazine 55

space and it communicates
directly with Explorer. On the
other hand, if you wanted to make
use of the built-in COM objects pro-
vided by Microsoft Word, then
you’d be using an out-of-process
server. Some out-of-process serv-
ers exist only to provide OLE serv-
ices and can’t be used as
applications in their own right.
Those ubiquitous ActiveX controls
(OCX files) are essentially just DLL
files that have been renamed to
have a ‘OCX’ extension. ActiveX
controls are therefore examples of
in-process COM servers.

Until Next Time...
That about wraps it up for this
month. This time round, we’ve
worked through a lot of interesting
material and you should now be
sufficiently ‘COM-cognisant’ to
understand much of what’s
involved in writing an in-process
COM server such as a context
menu handler. In next month’s
instalment, I’m going to give you
one or two tasty examples of con-
text menu handlers which are
designed to make life easier for
Delphi programmers. We’ll also be
looking at the role of the Windows

registry in the COM scheme of
things and discussing other new
concepts such as dispatch inter-
faces, dual interfaces, OLE auto-
mation and more... See you then!

Dave Jewell is a freelance consult-
ant/programmer and technical
journalist specialising in system-
level Windows and DOS work. He
is the Technical Editor of Develop-
ers Review, which is also pub-
lished by iTec. You can contact
Dave as Dave@HexManiac.com.

	The Conventional Way Of Depicting A COM Object
	Of GUIDs, IIDs And REFIIDs
	Delphi Meets COM
	For Anoraks Only...
	Introducing TComObject
	Delphi 3: Aggregation Without Aggravation!
	The Class Factory: Getting Into Manufacturing...
	Until Next Time...

